6 research outputs found

    Sensor Hop-based Energy Efficient Networking Approach for Routing in Underwater Acoustic Communication, Journal of Telecommunications and Information Technology, 2017, nr 1

    Get PDF
    nderwater Wireless Sensor Networks are deployed to explore the world under the water, measure different parameters and communicate the data to the surface, in the widespread applications. The main operating technology of these networks is the acoustic communication. The communication among the sensors and finally to the surface station requires a routing protocol. The sensors being battery limited and unfeasible to be replaced under the water requires an energy efficient routing protocol. Clustering imparted in routing is an energy saving technique in sensor networks. The routing may involve single or multi hop communication in the sensor networks. The paper gives a comparative study of the benchmark protocol multi-hop LEACH with the proposed Sensor Hop-based Energy Efficient Networking Approach (SHEENA) for the shallow as well as deep water in three dimensional Underwater Wireless Sensor Networks. The network energy model for the Underwater Wireless Sensor Networks is based among the different acoustic channel characteristics. The proposed approach is found to give better response

    SIMULATION AND ANALYSIS OF GREEDY ROUTING PROTOCOL IN VIEW OF ENERGY CONSUMPTION AND NETWORK LIFETIME IN THREE DIMENSIONAL UNDERWATER WIRELESS SENSOR NETWORK

    No full text
    Underwater Wireless Sensor Network (UWSN) comprises of a number of miniature sized sensing devices deployed in the sea or ocean, connected by dint of acoustic links to each other. The sensors trap the ambient conditions and transmit the data from one end to another. For transmission of data in any medium, routing protocols play a crucial role. Moreover, being battery limited, an unavoidable parameter to be considered in operation and analysis of protocols is the network energy and the network lifetime. The paper discusses the greedy routing protocol for underwater wireless sensor networks. The simulation of this routing protocol also takes into consideration the characteristics of acoustic communication like attenuation, transmission loss, signal to noise ratio, noise, propagation delay. The results from these observations may be used to construct an accurate underwater communication model

    Evolocumab in HIV-Infected Patients With Dyslipidemia

    No full text
    corecore